1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
use std::collections::HashMap;
use std::sync::{Mutex, OnceLock};

use regex::Regex;

use minion_ast::Model as MinionModel;
use minion_rs::ast as minion_ast;
use minion_rs::error::MinionError;
use minion_rs::{get_from_table, run_minion};

use crate::ast as conjure_ast;
use crate::solver::SolverCallback;
use crate::solver::SolverFamily;
use crate::solver::SolverMutCallback;
use crate::stats::SolverStats;
use crate::Model as ConjureModel;

use super::super::model_modifier::NotModifiable;
use super::super::private;
use super::super::SearchComplete::*;
use super::super::SearchIncomplete::*;
use super::super::SearchStatus::*;
use super::super::SolveSuccess;
use super::super::SolverAdaptor;
use super::super::SolverError;
use super::super::SolverError::*;

/// A [SolverAdaptor] for interacting with Minion.
///
/// This adaptor uses the `minion_rs` crate to talk to Minion over FFI.
pub struct Minion {
    __non_constructable: private::Internal,
    model: Option<MinionModel>,
}

static MINION_LOCK: Mutex<()> = Mutex::new(());
static USER_CALLBACK: OnceLock<Mutex<SolverCallback>> = OnceLock::new();
static ANY_SOLUTIONS: Mutex<bool> = Mutex::new(false);
static USER_TERMINATED: Mutex<bool> = Mutex::new(false);

#[allow(clippy::unwrap_used)]
fn minion_rs_callback(solutions: HashMap<minion_ast::VarName, minion_ast::Constant>) -> bool {
    *(ANY_SOLUTIONS.lock().unwrap()) = true;
    let callback = USER_CALLBACK
        .get_or_init(|| Mutex::new(Box::new(|x| true)))
        .lock()
        .unwrap();

    let mut conjure_solutions: HashMap<conjure_ast::Name, conjure_ast::Constant> = HashMap::new();
    for (minion_name, minion_const) in solutions.into_iter() {
        let conjure_const = match minion_const {
            minion_ast::Constant::Bool(x) => conjure_ast::Constant::Bool(x),
            minion_ast::Constant::Integer(x) => conjure_ast::Constant::Int(x),
            _ => todo!(),
        };

        let machine_name_re = Regex::new(r"__conjure_machine_name_([0-9]+)").unwrap();
        let conjure_name = if let Some(caps) = machine_name_re.captures(&minion_name) {
            conjure_ast::Name::MachineName(caps[1].parse::<i32>().unwrap())
        } else {
            conjure_ast::Name::UserName(minion_name)
        };

        conjure_solutions.insert(conjure_name, conjure_const);
    }

    let continue_search = (**callback)(conjure_solutions);
    if !continue_search {
        *(USER_TERMINATED.lock().unwrap()) = true;
    }

    continue_search
}

impl private::Sealed for Minion {}

impl Minion {
    pub fn new() -> Minion {
        Minion {
            __non_constructable: private::Internal,
            model: None,
        }
    }
}

impl Default for Minion {
    fn default() -> Self {
        Minion::new()
    }
}

impl SolverAdaptor for Minion {
    #[allow(clippy::unwrap_used)]
    fn solve(
        &mut self,
        callback: SolverCallback,
        _: private::Internal,
    ) -> Result<SolveSuccess, SolverError> {
        // our minion callback is global state, so single threading the adaptor as a whole is
        // probably a good move...
        #[allow(clippy::unwrap_used)]
        let mut minion_lock = MINION_LOCK.lock().unwrap();

        #[allow(clippy::unwrap_used)]
        let mut user_callback = USER_CALLBACK
            .get_or_init(|| Mutex::new(Box::new(|x| true)))
            .lock()
            .unwrap();
        *user_callback = callback;
        drop(user_callback); // release mutex. REQUIRED so that run_minion can use the
                             // user callback and not deadlock.

        run_minion(
            self.model.clone().expect("STATE MACHINE ERR"),
            minion_rs_callback,
        )
        .map_err(|err| match err {
            MinionError::RuntimeError(x) => Runtime(format!("{:#?}", x)),
            MinionError::Other(x) => Runtime(format!("{:#?}", x)),
            MinionError::NotImplemented(x) => RuntimeNotImplemented(x),
            x => Runtime(format!("unknown minion_rs error: {:#?}", x)),
        })?;

        let mut status = Complete(HasSolutions);
        if *(USER_TERMINATED.lock()).unwrap() {
            status = Incomplete(UserTerminated);
        } else if *(ANY_SOLUTIONS.lock()).unwrap() {
            status = Complete(NoSolutions);
        }
        Ok(SolveSuccess {
            stats: get_solver_stats(),
            status,
        })
    }

    fn solve_mut(
        &mut self,
        callback: SolverMutCallback,
        _: private::Internal,
    ) -> Result<SolveSuccess, SolverError> {
        Err(OpNotImplemented("solve_mut".into()))
    }

    fn load_model(&mut self, model: ConjureModel, _: private::Internal) -> Result<(), SolverError> {
        let mut minion_model = MinionModel::new();
        parse_vars(&model, &mut minion_model)?;
        parse_exprs(&model, &mut minion_model)?;
        self.model = Some(minion_model);
        Ok(())
    }

    fn get_family(&self) -> SolverFamily {
        SolverFamily::Minion
    }

    fn get_name(&self) -> Option<String> {
        Some("Minion".to_owned())
    }
}

fn parse_vars(
    conjure_model: &ConjureModel,
    minion_model: &mut MinionModel,
) -> Result<(), SolverError> {
    // TODO (niklasdewally): remove unused vars?
    // TODO (niklasdewally): ensure all vars references are used.

    for (name, variable) in conjure_model.variables.iter() {
        parse_var(name, variable, minion_model)?;
    }
    Ok(())
}

fn parse_var(
    name: &conjure_ast::Name,
    var: &conjure_ast::DecisionVariable,
    minion_model: &mut MinionModel,
) -> Result<(), SolverError> {
    match &var.domain {
        conjure_ast::Domain::IntDomain(ranges) => _parse_intdomain_var(name, ranges, minion_model),
        conjure_ast::Domain::BoolDomain => _parse_booldomain_var(name, minion_model),
        x => Err(ModelFeatureNotSupported(format!("{:?}", x))),
    }
}

fn _parse_intdomain_var(
    name: &conjure_ast::Name,
    ranges: &[conjure_ast::Range<i32>],
    minion_model: &mut MinionModel,
) -> Result<(), SolverError> {
    let str_name = _name_to_string(name.to_owned());

    if ranges.len() != 1 {
        return Err(ModelFeatureNotImplemented(format!(
            "variable {:?} has {:?} ranges. Multiple ranges / SparseBound is not yet supported.",
            str_name,
            ranges.len()
        )));
    }

    let range = ranges.first().ok_or(ModelInvalid(format!(
        "variable {:?} has no range",
        str_name
    )))?;

    let (low, high) = match range {
        conjure_ast::Range::Bounded(x, y) => Ok((x.to_owned(), y.to_owned())),
        conjure_ast::Range::Single(x) => Ok((x.to_owned(), x.to_owned())),
        #[allow(unreachable_patterns)]
        x => Err(ModelFeatureNotSupported(format!("{:?}", x))),
    }?;

    _try_add_var(
        str_name.to_owned(),
        minion_ast::VarDomain::Bound(low, high),
        minion_model,
    )
}

fn _parse_booldomain_var(
    name: &conjure_ast::Name,
    minion_model: &mut MinionModel,
) -> Result<(), SolverError> {
    let str_name = _name_to_string(name.to_owned());
    _try_add_var(
        str_name.to_owned(),
        minion_ast::VarDomain::Bool,
        minion_model,
    )
}

fn _try_add_var(
    name: minion_ast::VarName,
    domain: minion_ast::VarDomain,
    minion_model: &mut MinionModel,
) -> Result<(), SolverError> {
    minion_model
        .named_variables
        .add_var(name.clone(), domain)
        .ok_or(ModelInvalid(format!(
            "variable {:?} is defined twice",
            name
        )))
}

fn parse_exprs(
    conjure_model: &ConjureModel,
    minion_model: &mut MinionModel,
) -> Result<(), SolverError> {
    for expr in conjure_model.get_constraints_vec().iter() {
        parse_expr(expr.to_owned(), minion_model)?;
    }
    Ok(())
}

fn parse_expr(
    expr: conjure_ast::Expression,
    minion_model: &mut MinionModel,
) -> Result<(), SolverError> {
    minion_model.constraints.push(read_expr(expr)?);
    Ok(())
}

fn read_expr(expr: conjure_ast::Expression) -> Result<minion_ast::Constraint, SolverError> {
    match expr {
        conjure_ast::Expression::SumLeq(_metadata, lhs, rhs) => Ok(minion_ast::Constraint::SumLeq(
            read_vars(lhs)?,
            read_var(*rhs)?,
        )),
        conjure_ast::Expression::SumGeq(_metadata, lhs, rhs) => Ok(minion_ast::Constraint::SumGeq(
            read_vars(lhs)?,
            read_var(*rhs)?,
        )),
        conjure_ast::Expression::Ineq(_metadata, a, b, c) => Ok(minion_ast::Constraint::Ineq(
            read_var(*a)?,
            read_var(*b)?,
            minion_ast::Constant::Integer(read_const(*c)?),
        )),
        conjure_ast::Expression::Neq(_metadata, a, b) => {
            Ok(minion_ast::Constraint::DisEq(read_var(*a)?, read_var(*b)?))
        }
        conjure_ast::Expression::DivEq(_metadata, a, b, c) => Ok(
            minion_ast::Constraint::DivUndefZero((read_var(*a)?, read_var(*b)?), read_var(*c)?),
        ),
        conjure_ast::Expression::Or(_metadata, exprs) => Ok(minion_ast::Constraint::WatchedOr(
            exprs
                .iter()
                .map(|x| read_expr(x.to_owned()))
                .collect::<Result<Vec<minion_ast::Constraint>, SolverError>>()?,
        )),
        conjure_ast::Expression::Eq(_metadata, a, b) => {
            Ok(minion_ast::Constraint::Eq(read_var(*a)?, read_var(*b)?))
        }
        x => Err(ModelFeatureNotSupported(format!("{:?}", x))),
    }
}
fn read_vars(exprs: Vec<conjure_ast::Expression>) -> Result<Vec<minion_ast::Var>, SolverError> {
    let mut minion_vars: Vec<minion_ast::Var> = vec![];
    for expr in exprs {
        let minion_var = read_var(expr)?;
        minion_vars.push(minion_var);
    }
    Ok(minion_vars)
}

fn read_var(e: conjure_ast::Expression) -> Result<minion_ast::Var, SolverError> {
    // a minion var is either a reference or a "var as const"
    match _read_ref(e.clone()) {
        Ok(name) => Ok(minion_ast::Var::NameRef(name)),
        Err(_) => match read_const(e) {
            Ok(n) => Ok(minion_ast::Var::ConstantAsVar(n)),
            Err(x) => Err(x),
        },
    }
}

fn _read_ref(e: conjure_ast::Expression) -> Result<String, SolverError> {
    let name = match e {
        conjure_ast::Expression::Reference(_metadata, n) => Ok(n),
        x => Err(ModelInvalid(format!(
            "expected a reference, but got `{0:?}`",
            x
        ))),
    }?;

    let str_name = _name_to_string(name);
    Ok(str_name)
}

fn read_const(e: conjure_ast::Expression) -> Result<i32, SolverError> {
    match e {
        conjure_ast::Expression::Constant(_, conjure_ast::Constant::Int(n)) => Ok(n),
        x => Err(ModelInvalid(format!(
            "expected a constant, but got `{0:?}`",
            x
        ))),
    }
}

fn _name_to_string(name: conjure_ast::Name) -> String {
    match name {
        conjure_ast::Name::UserName(x) => x,
        conjure_ast::Name::MachineName(x) => format!("__conjure_machine_name_{}", x),
    }
}

#[allow(clippy::unwrap_used)]
fn get_solver_stats() -> SolverStats {
    SolverStats {
        nodes: get_from_table("Nodes".into()).map(|x| x.parse::<u64>().unwrap()),
        ..Default::default()
    }
}